Research
Clean Energy
Broadband Silicon-Based Quantum Dot Absorption Materials
James Kolodzey
- Package Design for High Performance Solar Cells
- 50% Efficient Solar Cells
- Fabrication of Light Emitters Based on Tin-Germanium Alloys
- Spintronic Sensors and Microwave Phase Detection
- Broadband Silicon-Based Quantum Dot Absorption Materials
- Terahertz Spectroscopy of Doped Nanostructures
- Dilute Nitride Technology for Infrared Detectors
- Germanium-Based Solar Cells for Long Wavelength Sensitivity
Current funding
National Science Foundation, SBIR grant with QuantTera
Group Staff
Graduate Student
John LaRocco
Collaborators
Dr. Matt Kim
We are working with a small business, QuantTera, to develop silicon-germanium based quantum dot optoelectronic materials. The proposed quantum dot nanostructures operate over a wide range of optical wavelengths by virtue of their composition and size distribution are capable of exhibiting diverse controllable and predictable physical responses when subjected to various external conditions. This innovative nanomaterial will be multifunctional which would allow the development of broadly absorbing solar cells on silicon with a single junction technology for alternative energy applications or the development of highly efficient broadband photo-detectors for telecommunications applications. Using layers of silicon-germanium quantum dots that were grown by molecular beam epitaxy, we have fabricated light emitters that operate at low temperatures and up to room temperature.

